Logarithm Iteration law for Wiener process

Version 4.2:
plot Iteration Logarithm Law obtained Wiener process, and show points of intersection with line under ‘y’

import numpy as np
import matplotlib.pyplot as plt

def foo(count=(1,10,1), t=slider(100,1000,100,default=100), y=.2):

dt = 1/t

x = np.arange(1, step=dt)
xl = np.arange(1, step=.000001)

lin = y + x*0
plt.plot(x, lin)

W = np.zeros(t, np.dtype(float))

l = np.sqrt(2*xl*ln(ln(1/xl)))
plt.plot(xl, l,'r--') # <= add subplot
plt.plot(xl, -l,'r--')

mu, sig = 0, 1

for ITER in range(1, count+1):
for i in range(1, len(W)):
W[i] = W[i-1] + np.random.normal(mu, sig) * np.sqrt(dt)

#print '\nlin ', lin
#print '\nW ', W
Func = lin - W
Sign = np.sign(Func)
#print '\nSign ', Sign
Diff = np.diff(Sign)
#print '\nDiff ', Diff
Points = np.where(Diff != 0)[0]
print '\nPoints of intersection =', Points*dt


def _dee(deep=slider(0.0001, .4, 0.001, default=.2)):
plt.xlim(0, deep)
plt.ylim(-.5, .5)

Screenshot - 05232014 - 04:02:53

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s